- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Atherton, Timothy J. (2)
-
Giso, Mathew Q. (2)
-
Atherton, Timothy J (1)
-
Burke, Christopher J. (1)
-
Datta, Sujit S (1)
-
Giso, Mathew Q (1)
-
Joshi, Chaitanya (1)
-
Louf, Jean-François (1)
-
Mascioli, Andrew M. (1)
-
Spicer, Patrick T. (1)
-
Zhao, Haoda (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Giso, Mathew Q.; Zhao, Haoda; Spicer, Patrick T.; Atherton, Timothy J. (, Langmuir)null (Ed.)
-
Mascioli, Andrew M.; Burke, Christopher J.; Giso, Mathew Q.; Atherton, Timothy J. (, Soft Matter)We study packings of bidispersed spherical particles on a spherical surface. The presence of curvature necessitates defects even for monodispersed particles; bidispersity either leads to a more disordered packing for nearly equal radii, or a higher fill fraction when the smaller particles are accommodated in the interstices of the larger spheres. Variation in the packing fraction is explained by a percolation transition, as chains of defects or scars previously discovered in the monodispersed case grow and eventually disconnect the neighbor graph.more » « less
An official website of the United States government
